Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Conductivity control of as-grown branched indium tin oxide nanowire networks

Identifieur interne : 000173 ( Main/Repository ); précédent : 000172; suivant : 000174

Conductivity control of as-grown branched indium tin oxide nanowire networks

Auteurs : RBID : Pascal:14-0050641

Descripteurs français

English descriptors

Abstract

Branched indium tin oxide (ITO) nanowire networks are promising candidates for transparent conductive oxide applications, such as optoelectronic electrodes, due to their high porosity. However, these branched networks also present new challenges in assessing conductivity. Conventional four-point probe techniques cannot separate the effect of porosity on the long-range conductivity from the intrinsic material conductivity. Here we compare the average nanoscale conductivity within the film measured by terahertz time-domain spectroscopy (THz-TDS) to the film conductivity measured by four-point probe in a branched ITO nanowire network. Both techniques report conductivity increases with deposition flux rate from 0.5 to 3.0 nm s-1, achieving a maximum of∼10(Ω cm)-1. Modeling the THz-TDS conductivity data using the Drude-Smith model allows us to distinguish between conductivity increases resulting from morphological changes and those resulting from the intrinsic properties of the ITO. In particular, the intrinsic material conductivity within the nanowires can be extracted, and is found to reach a maximum of ∼3000 (Ω cm)-1, comparable to bulk ITO. To determine the mechanism responsible for increasing conductivity with flux rate, we characterize dopant concentration and morphological changes (i.e., to branching behavior, nanowire diameter and nucleation layers). We propose that changes in the electron density, primarily due to changes in O-vacancy concentration at different flux rates, are responsible for the observed conductivity increase. This understanding will assist balancing structural and conductivity requirements in applications of transparent conductive oxide networks.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:14-0050641

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Conductivity control of as-grown branched indium tin oxide nanowire networks</title>
<author>
<name sortKey="Laforge, J M" uniqKey="Laforge J">J. M. Laforge</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Electrical and Computer Engineering, University of Alberta</s1>
<s2>Edmonton, AB</s2>
<s3>CAN</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>Canada</country>
<wicri:noRegion>Edmonton, AB</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Cocker, T L" uniqKey="Cocker T">T. L. Cocker</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Department of Physics, University of Alberta</s1>
<s2>Edmonton, AB</s2>
<s3>CAN</s3>
<sZ>2 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>Canada</country>
<wicri:noRegion>Edmonton, AB</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Beaudry, A L" uniqKey="Beaudry A">A. L. Beaudry</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Electrical and Computer Engineering, University of Alberta</s1>
<s2>Edmonton, AB</s2>
<s3>CAN</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>Canada</country>
<wicri:noRegion>Edmonton, AB</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Cui, K" uniqKey="Cui K">K. Cui</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>NRC National Institute for Nanotechnology</s1>
<s2>Edmonton, AB, T6G 2M9</s2>
<s3>CAN</s3>
<sZ>4 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>Canada</country>
<wicri:noRegion>NRC National Institute for Nanotechnology</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Tucker, R T" uniqKey="Tucker R">R. T. Tucker</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Electrical and Computer Engineering, University of Alberta</s1>
<s2>Edmonton, AB</s2>
<s3>CAN</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>Canada</country>
<wicri:noRegion>Edmonton, AB</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Taschuk, M T" uniqKey="Taschuk M">M. T. Taschuk</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Electrical and Computer Engineering, University of Alberta</s1>
<s2>Edmonton, AB</s2>
<s3>CAN</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>Canada</country>
<wicri:noRegion>Edmonton, AB</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Hegmann, F A" uniqKey="Hegmann F">F. A. Hegmann</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Department of Physics, University of Alberta</s1>
<s2>Edmonton, AB</s2>
<s3>CAN</s3>
<sZ>2 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>Canada</country>
<wicri:noRegion>Edmonton, AB</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Brett, M J" uniqKey="Brett M">M. J. Brett</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Electrical and Computer Engineering, University of Alberta</s1>
<s2>Edmonton, AB</s2>
<s3>CAN</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>Canada</country>
<wicri:noRegion>Edmonton, AB</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>NRC National Institute for Nanotechnology</s1>
<s2>Edmonton, AB, T6G 2M9</s2>
<s3>CAN</s3>
<sZ>4 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>Canada</country>
<wicri:noRegion>NRC National Institute for Nanotechnology</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">14-0050641</idno>
<date when="2014">2014</date>
<idno type="stanalyst">PASCAL 14-0050641 INIST</idno>
<idno type="RBID">Pascal:14-0050641</idno>
<idno type="wicri:Area/Main/Corpus">000160</idno>
<idno type="wicri:Area/Main/Repository">000173</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0957-4484</idno>
<title level="j" type="abbreviated">Nanotechnology : (Bristol, Print)</title>
<title level="j" type="main">Nanotechnology : (Bristol. Print)</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Deposition rate</term>
<term>Drude model</term>
<term>Electrical conductivity</term>
<term>Electron density</term>
<term>Indium oxide</term>
<term>Modelling</term>
<term>Morphological changes</term>
<term>Nanoelectronics</term>
<term>Nanometer scale</term>
<term>Nanostructured materials</term>
<term>Nanostructures</term>
<term>Nanowires</term>
<term>Nucleation</term>
<term>Optoelectronics</term>
<term>Porosity</term>
<term>TDS</term>
<term>THz range</term>
<term>Theoretical study</term>
<term>Thin films</term>
<term>Tin oxide</term>
<term>Vacancies</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Conductivité électrique</term>
<term>Oxyde d'indium</term>
<term>Oxyde d'étain</term>
<term>Nanofil</term>
<term>Nanomatériau</term>
<term>Optoélectronique</term>
<term>Nanoélectronique</term>
<term>Porosité</term>
<term>Nanostructure</term>
<term>Echelle nanométrique</term>
<term>Couche mince</term>
<term>Domaine fréquence THz</term>
<term>TDS</term>
<term>Vitesse dépôt</term>
<term>Modélisation</term>
<term>Etude théorique</term>
<term>Modèle Drude</term>
<term>Changement morphologique</term>
<term>Nucléation</term>
<term>Densité électron</term>
<term>Lacune</term>
<term>7363</term>
<term>8107V</term>
<term>8107B</term>
<term>8535</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Branched indium tin oxide (ITO) nanowire networks are promising candidates for transparent conductive oxide applications, such as optoelectronic electrodes, due to their high porosity. However, these branched networks also present new challenges in assessing conductivity. Conventional four-point probe techniques cannot separate the effect of porosity on the long-range conductivity from the intrinsic material conductivity. Here we compare the average nanoscale conductivity within the film measured by terahertz time-domain spectroscopy (THz-TDS) to the film conductivity measured by four-point probe in a branched ITO nanowire network. Both techniques report conductivity increases with deposition flux rate from 0.5 to 3.0 nm s
<sup>-1</sup>
, achieving a maximum of∼10(Ω cm)
<sup>-1</sup>
. Modeling the THz-TDS conductivity data using the Drude-Smith model allows us to distinguish between conductivity increases resulting from morphological changes and those resulting from the intrinsic properties of the ITO. In particular, the intrinsic material conductivity within the nanowires can be extracted, and is found to reach a maximum of ∼3000 (Ω cm)
<sup>-1</sup>
, comparable to bulk ITO. To determine the mechanism responsible for increasing conductivity with flux rate, we characterize dopant concentration and morphological changes (i.e., to branching behavior, nanowire diameter and nucleation layers). We propose that changes in the electron density, primarily due to changes in O-vacancy concentration at different flux rates, are responsible for the observed conductivity increase. This understanding will assist balancing structural and conductivity requirements in applications of transparent conductive oxide networks.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0957-4484</s0>
</fA01>
<fA03 i2="1">
<s0>Nanotechnology : (Bristol, Print)</s0>
</fA03>
<fA05>
<s2>25</s2>
</fA05>
<fA06>
<s2>3</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Conductivity control of as-grown branched indium tin oxide nanowire networks</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>LAFORGE (J. M.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>COCKER (T. L.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>BEAUDRY (A. L.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>CUI (K.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>TUCKER (R. T.)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>TASCHUK (M. T.)</s1>
</fA11>
<fA11 i1="07" i2="1">
<s1>HEGMANN (F. A.)</s1>
</fA11>
<fA11 i1="08" i2="1">
<s1>BRETT (M. J.)</s1>
</fA11>
<fA14 i1="01">
<s1>Department of Electrical and Computer Engineering, University of Alberta</s1>
<s2>Edmonton, AB</s2>
<s3>CAN</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>8 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Department of Physics, University of Alberta</s1>
<s2>Edmonton, AB</s2>
<s3>CAN</s3>
<sZ>2 aut.</sZ>
<sZ>7 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>NRC National Institute for Nanotechnology</s1>
<s2>Edmonton, AB, T6G 2M9</s2>
<s3>CAN</s3>
<sZ>4 aut.</sZ>
<sZ>8 aut.</sZ>
</fA14>
<fA20>
<s2>035701.1-035701.9</s2>
</fA20>
<fA21>
<s1>2014</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>22480</s2>
<s5>354000500788810150</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2014 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>49 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>14-0050641</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Nanotechnology : (Bristol. Print)</s0>
</fA64>
<fA66 i1="01">
<s0>GBR</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Branched indium tin oxide (ITO) nanowire networks are promising candidates for transparent conductive oxide applications, such as optoelectronic electrodes, due to their high porosity. However, these branched networks also present new challenges in assessing conductivity. Conventional four-point probe techniques cannot separate the effect of porosity on the long-range conductivity from the intrinsic material conductivity. Here we compare the average nanoscale conductivity within the film measured by terahertz time-domain spectroscopy (THz-TDS) to the film conductivity measured by four-point probe in a branched ITO nanowire network. Both techniques report conductivity increases with deposition flux rate from 0.5 to 3.0 nm s
<sup>-1</sup>
, achieving a maximum of∼10(Ω cm)
<sup>-1</sup>
. Modeling the THz-TDS conductivity data using the Drude-Smith model allows us to distinguish between conductivity increases resulting from morphological changes and those resulting from the intrinsic properties of the ITO. In particular, the intrinsic material conductivity within the nanowires can be extracted, and is found to reach a maximum of ∼3000 (Ω cm)
<sup>-1</sup>
, comparable to bulk ITO. To determine the mechanism responsible for increasing conductivity with flux rate, we characterize dopant concentration and morphological changes (i.e., to branching behavior, nanowire diameter and nucleation layers). We propose that changes in the electron density, primarily due to changes in O-vacancy concentration at different flux rates, are responsible for the observed conductivity increase. This understanding will assist balancing structural and conductivity requirements in applications of transparent conductive oxide networks.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B70C63</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B80A07V</s0>
</fC02>
<fC02 i1="03" i2="3">
<s0>001B80A07B</s0>
</fC02>
<fC02 i1="04" i2="X">
<s0>001D03F18</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Conductivité électrique</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>Electrical conductivity</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Oxyde d'indium</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Indium oxide</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Indio óxido</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Oxyde d'étain</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Tin oxide</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Estaño óxido</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Nanofil</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Nanowires</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Nanomatériau</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>Nanostructured materials</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Optoélectronique</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Optoelectronics</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Optoelectrónica</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Nanoélectronique</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Nanoelectronics</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Porosité</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Porosity</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Nanostructure</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Nanostructures</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Echelle nanométrique</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>Nanometer scale</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Couche mince</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>Thin films</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Domaine fréquence THz</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>THz range</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>TDS</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="3" l="ENG">
<s0>TDS</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Vitesse dépôt</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>Deposition rate</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Velocidad deposición</s0>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="3" l="FRE">
<s0>Modélisation</s0>
<s5>29</s5>
</fC03>
<fC03 i1="15" i2="3" l="ENG">
<s0>Modelling</s0>
<s5>29</s5>
</fC03>
<fC03 i1="16" i2="3" l="FRE">
<s0>Etude théorique</s0>
<s5>30</s5>
</fC03>
<fC03 i1="16" i2="3" l="ENG">
<s0>Theoretical study</s0>
<s5>30</s5>
</fC03>
<fC03 i1="17" i2="3" l="FRE">
<s0>Modèle Drude</s0>
<s5>31</s5>
</fC03>
<fC03 i1="17" i2="3" l="ENG">
<s0>Drude model</s0>
<s5>31</s5>
</fC03>
<fC03 i1="18" i2="3" l="FRE">
<s0>Changement morphologique</s0>
<s5>32</s5>
</fC03>
<fC03 i1="18" i2="3" l="ENG">
<s0>Morphological changes</s0>
<s5>32</s5>
</fC03>
<fC03 i1="19" i2="3" l="FRE">
<s0>Nucléation</s0>
<s5>33</s5>
</fC03>
<fC03 i1="19" i2="3" l="ENG">
<s0>Nucleation</s0>
<s5>33</s5>
</fC03>
<fC03 i1="20" i2="3" l="FRE">
<s0>Densité électron</s0>
<s5>34</s5>
</fC03>
<fC03 i1="20" i2="3" l="ENG">
<s0>Electron density</s0>
<s5>34</s5>
</fC03>
<fC03 i1="21" i2="3" l="FRE">
<s0>Lacune</s0>
<s5>35</s5>
</fC03>
<fC03 i1="21" i2="3" l="ENG">
<s0>Vacancies</s0>
<s5>35</s5>
</fC03>
<fC03 i1="22" i2="3" l="FRE">
<s0>7363</s0>
<s4>INC</s4>
<s5>71</s5>
</fC03>
<fC03 i1="23" i2="3" l="FRE">
<s0>8107V</s0>
<s4>INC</s4>
<s5>72</s5>
</fC03>
<fC03 i1="24" i2="3" l="FRE">
<s0>8107B</s0>
<s4>INC</s4>
<s5>73</s5>
</fC03>
<fC03 i1="25" i2="3" l="FRE">
<s0>8535</s0>
<s4>INC</s4>
<s5>74</s5>
</fC03>
<fN21>
<s1>062</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000173 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 000173 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:14-0050641
   |texte=   Conductivity control of as-grown branched indium tin oxide nanowire networks
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024